Get the content you want anytime you want.
REGISTER NOW | SIGN IN
<< View All Contributors
Saskia v. Popescu, MPH, MA, CIC, is a hospital epidemiologist and infection preventionist with Phoenix Children's Hospital. During her work as an infection preventionist she performed surveillance for infectious diseases, preparedness, and Ebola-response practices. She is currently a PhD candidate in Biodefense at George Mason University where her research focuses on the role of infection prevention in facilitating global health security efforts. She is certified in Infection Control.

Biodetection Technologies Biothreats and Pathogen Detection: Coverage from the Biodefense World Summit

JUL 19, 2017 | SASKIA V. POPESCU
The Biodefense World Summit which was recently held in late June 2017 had a wide variety of presentations and topics that were as diverse as the threats themselves. Over the coming weeks, I will be reviewing some of the presentations that were given in each topic area to give readers a nice overview of this fascinating world summit.
 
First, I’ll be highlighting some of the presentations in the Biodetection Technologies: Biothreat and Pathogen Detection group. I was amazed to see the array of topics that ranged from clinical diagnostic systems to nuclease-activated probes for rapid detection of bacterial pathogens. A session on the evaluation of a microarray platform which monitored the genomic drift of Ebola virus proved particularly interesting. Speakers Robert Duncan, PhD, and Irina Tiper, MM, both from the US Food and Drug Administration (FDA), shared that a major goal for controlling the Ebola virus during outbreaks is to be able to not only trace the path of the virus as it spreads, but also to determine genomic sequences and mutations that occur. For example, the 2014-2015 Ebola outbreak in West Africa had a high mutation rate, and this may have led to its high virility, making it more deadly. Researchers found that a resequencing microarray was capable of accurately sequencing Ebola virus and, because of how quickly the microarray works, it was capable of detecting genomic drift during such a chaotic time.

Another captivating presentation was from Jürgen A. Richt, DVM, PhD, and Tammy Beckham, DVM, PhD, of CEEZAD (Center of Excellence for Emerging and Zoonotic Animal Diseases) on Agro-Defense. Their presentation highlighted the importance of defending agriculture and food security, highlighting the US GDP (gross domestic product) contribution of agriculture exceeds $1 trillion USD per year and is vulnerable to both natural and intentional biothreats. Their presentation listed several current and emerging threats to US agriculture, such as Ebola, porcine epidemic diarrhea virus, vesicular stomatitis virus, and others. Moreover, these emerging diseases affect various species, ranging from horses to dogs, swine, and even fish.
 
One of the most interesting aspects of their presentation was the inclusion of economic data regarding the impact of specific infectious diseases that hit the food industry. For example, Since the outbreak started in 2002, Severe acute respiratory syndrome (SARS) cost China, Hong Kong, Singapore, and Canada roughly $50 billion, while foot and mouth disease outbreaks in 2001 and 2007 cost the UK $30 billion, and highly pathogenic avian influenza virus in the United States in 2014 cost the country roughly $4 billion. These costs are only amplified by a growing population and thus an increasing need for food. In 2050, it is estimated that the world population will be 9 billion people, which begs the question; How will we feed them all without sacrificing food security?
 
Drs. Richt and Beckham then took the audience on a journey through a hypothetical case that could impact the distribution and economic of agriculture, such as a suspected case of foot and mouth disease virus in the United States. Through this example, they revealed the process for food detection, time delay in laboratory confirmation, and how food safety experts are working against the clock to prevent contaminated food from distribution. In my opinion, this was perhaps one of the most captivating presentations as it truly revealed the importance of detection technology and a streamlined coordination between farm and table. Overall, this section was highly engaging and technical, but truly emphasized the importance of diagnostic innovation and strong detection capabilities to handle outbreaks of various origins.
To stay informed on the latest in infectious disease news and developments, please sign up for our weekly newsletter.
FEATURED
Despite clearing the virus, researchers find that Ebola survivors can suffer long-term effects of infection.
More from Saskia v. Popescu
It's time to talk about the horsepox synthesis and what it means for the biosecurity world and public health overall.
PUBLISHED: Mon October 23 2017
Infection prevention goes beyond healthcare workers. Here's why we should all celebrate this week.
PUBLISHED: Thu October 19 2017
A recent outbreak involving sterile medical supplies gives insight into a new hospital infectious disease threat.
PUBLISHED: Fri October 13 2017
A new study pulls back the curtain into a complex web of resistance, colonization, and the challenges of antimicrobial resistance in this setting.
PUBLISHED: Wed October 11 2017
x