Get the content you want anytime you want.
REGISTER NOW | SIGN IN
ARTICLE

Microbes & Hosts Fight to Acquire Essential Metals: This Battle May Open the Door for New Treatments

JAN 10, 2017 | KRISTI ROSA
Every time that a bacterial infection occurs within an individual, microbes and hosts engage in a persistent battle over precious metals, such as iron. The host struggles to keep these essential metals away from the microbes, which need them for their survival. In this battle, both the host and the microbes release a number of molecules and proteins. Researchers, such as Elizabeth Nolan, PhD, an associate professor of chemistry at the Massachusetts Institute of Technology (MIT), hope that further analysis of this struggle will provide insight that may help inform the development of new drugs that can be used in the fight against bacterial infections.
 
In a recent press release, Dr. Nolan explained, “Understanding how our innate immune system works is important for thinking about the development of new ways to treat infectious diseases.”

Essential metals such as iron, calcium, magnesium, and zinc assist cells in performing a variety of functions, such as, “cell respiration, catalyzing chemical reactions, signal transduction, and maintaining structural integrity of proteins and nucleic acids.” In fact, 30% of cell proteins need assistance from the aforementioned metals.
 
Dr. Nolan, head of the Nolan Lab at MIT, created a research program that would focus on how microbes and hosts fight for these essential metals. One of her team’s projects specifically focused on siderophores, which are molecules that bacteria use as a tool to extract essential metals from hosts. These siderophores, once released into their environment, actually adhere to the essential metals and then bring them back into bacterial cells.
 
The team sought to take a closer look at this extraction process to see if further understanding could inform potential therapeutic avenues. They intervened on this process by using these molecules to bring antibiotics back into bacterial cells instead. Dr. Nolan and her team found that by doing this, they could avoid killing microbe species that are actually beneficial; by adhering antibiotics to specific siderophores, only certain bacterial strains are targeted, and thus, only harmful microbes would be eliminated.
 
This isn’t the only time that Dr. Nolan and her team used Salmonella siderophores to increase their understanding. In another past study, the researchers found a new way to “immunize against microbes that invade the gastrointestinal tract,” in mice.
 


FEATURED
NIAID researchers make an unexpected discovery when examining how a cellular enzyme complex regulates herpesvirus; inhibiting the enzyme suppressed viral infection.
x