Get the content you want anytime you want.

Ebola Infection May Provide Partial Immunity to Other Filoviruses

Those patients who survive infections caused by the Ebola or Marburg viruses may gain at least partial immunity to other filoviruses through specific antibodies generated during serological immune responses. Furthermore, these antibodies can persist for many years beyond the onset of infection, according to the results of a study published recently in Clinical and Vaccine Immunology.1
The study was presented by first author Mohan Natesan, PhD, from the Molecular and Translational Sciences Division of the United States Army Medical Research Institute of Infectious Diseases in Frederick, and his colleagues. In describing the rationale for- and timing of the study, Dr. Natesan told Contagion, "There is an urgent need for vaccines and therapeutics that can be used to treat future disease outbreaks and to block virus shedding from chronic Ebola infections. Yet, there are few laboratory methods that provide a comprehensive analysis of antibodies resulting from infection or prospective vaccines. Virus neutralization assays, ELISAs, and similar traditional methods generally address a limited number of pathogens and are costly to perform. The protein microarray method used in our research, is a recent technological development that provides a high-throughput and low cost analysis of biological fluids. Very large panels of recombinant proteins as well as inactivated viruses can be incorporated in small quantities into the microarray to perform many separate assays at the same time."
Dr. Natesan and his colleagues studied protein and virus-specific antibodies from the sera of Marburg marburgvirus (MARG), Bundibugyo (BDBV), and the Filoviridae species Sudan (SUDV) survivors using the aforementioned multiplexed microarray. Of the seven antigens encoded by filovirus genomes, three were focused on in this study. Two conserved antigens, viral protein 40 (VP40) and nucleoprotein (NP), and one highly variable antigen, envelope glycoprotein (GP), were selected because conserved antigens have the potential to capture serological responses against the broadest number of infections, while those that are more variable may be able to detect antibodies that differ between viral variants. VP40, NP, and GP from six species of filoviruses and nine isolates of whole inactivated filoviruses were included in the array. The patient sera examined were collected one, seven, and 14 years after recovery from MARG, BDBV, and SUD, respectively.
The microarray data indicated that antibody responses differed between those infected with MARG, BDBV, and SUD. While sera from those surviving any one of these infections showed significant antibody responses to antigens from the original infecting species, the pattern of additional cross reactivity with other filoviruses varied. For example, NP was found to be the most cross-reactive of the antigens assessed. Conversely, GP was found to be the most specific antigen. Additionally, antibodies from MARG survivors were found to be the least cross-reactive, while the highest cross reactivity was detected amongst survivors of (SUDV).

We break down our top HIV news stories of 2017. Did you read them all?