Get the content you want anytime you want.
<< View All Contributors
Saskia v. Popescu, PhD, MPH, MA, CIC, is a hospital epidemiologist and infection preventionist. During her work as an infection preventionist, she performed surveillance for infectious diseases, preparedness, and Ebola-response practices. She holds a doctorate in Biodefense from George Mason University where her research focuses on the role of infection prevention in facilitating global health security efforts. She is certified in Infection Control and has worked in both pediatric and adult acute care facilities.

Going Against the Norm: Testing A New Skin Disinfectant

Decolonizing a patient’s skin is critical for reducing microbial burden during hospitalization, especially before surgery to reduce the risk of surgical site infections, as well as other health care-associated infections (HAIs). Topical antiseptics are commonly used to clean and decolonize patients who may be going into surgery or those who are unable to clean themselves and who are at risk for infection (ie, patients in intensive care units). The use of these antiseptics come with added caveats, though, and so, there is a continued push for finding new methods for decolonizing patients’ skin.

The gold standard topical antiseptic is chlorhexidine gluconate because it can quickly and effectively rid the skin of microbes; however, there is also a risk for skin irritation and allergies when using the antiseptic, which can result in skin breakdown and pain for the patient. Moreover, chlorhexidine gluconate should not be used on patients with compromised skin. With concern for microbial resistance continuing to grow, scientists are searching for new agents that can be used for disinfection and decolonization on all groups of patients.

As such, the authors of a new research study tested a multi-ingredient surfactant colloidal silver technology to see if it was noninferior to a 4% chlorhexidine gluconate antiseptic.

The team of investigators recruited 81 participants in Bozeman, Montana, who were in good health and who, for 14 days before the test portion of the study, avoided medicated soaps, lotions, deodorants, shampoos, and skin contact with solvents, detergents, etc. Seventy-two hours before the experiment, the investigators screened a skin sample via a sterile cylinder in which the 3.46 cm inside the cylinder was the test area. On each participant, they marked 4 areas of the inguinal region, of which 3 were then sampled (1 as a baseline, 1 at 10 minutes, and 1 at 6 hours). These sites were sampled for microbial loads after 6 hours were covered with sterile gauze and bandages and then sampled. The investigators then plated the samples and microbial colonies were manually counted and data was then assessed.

A total of 40 participants received colloidal silver and 41 received 4% chlorhexidine gluconate as treatments.

For the 10-minute group, the investigators found the mean recovery of microbial flora to be 3.83 for colloidal silver and 3.64 for 4% chlorhexidine gluconate, while the 6-hour group had a recovery average of 3.49 for colloidal silver and 3.34 for 4% chlorhexidine gluconate. The average treatment efficacy was .18-.21, meaning that the colloidal silver was noninferior to the 4% chlorhexidine gluconate. The investigators note that “the 95% confidence interval of the test product to the control product with a margin of 0.65 was established as the upper limit of noninferiority.” 

Ultimately, the treatments were of similar efficacy and although the sample size was small, the results should prove encouraging for future efforts to find nonchlorhexidine gluconate antiseptics for skin decolonization.

Furthermore, the research is timely given the latest US Food and Drug Administration guidance that warned of a greater chance for safety concerns related to chlorhexidine gluconate-containing products. Since chlorhexidine gluconate is widely used, alternatives should be investigated for future application and hopefully, they will prove less abrasive to the skin, but still efficacious against hardy microbes. 
To stay informed on the latest in infectious disease news and developments, please sign up for our weekly newsletter.
Is there a cure? How long until we find it? And will it work for the majority of people living with HIV?
More from Saskia v. Popescu
Is there an association with adverse outcomes in patients hospitalized with influenza taking NSAIDS?
PUBLISHED: Mon July 13 2020
How did the Western Pacific Region address rubella in recent outbreaks?
PUBLISHED: Thu July 02 2020
Where did things go wrong for the Grand Canyon State?
PUBLISHED: Thu June 25 2020
A new phase 2b trial shows promise in HCV treatment.
PUBLISHED: Wed June 17 2020