Get the content you want anytime you want.

ASM Microbe 2017 Keynote Speaker Brings DNA Sequencing to Space

A keynote conversation between American Society for Microbiology (ASM) member Kate Rubins, PhD, National Aeronautics and Space Administration (NASA) astronaut, and Ed Yong, science journalist/author reporting for The Atlantic, was held at the ASM Microbe 2017 meeting, on Saturday, June 3rd, 2017.

Previously, Dr. Rubins was a principal investigator at the Whitehead Institute for Biomedical Research (MIT/Cambridge, Massachusetts) and head of a lab of 14 researchers focused on studying viral diseases related to poxviruses, filoviruses (such as Ebola and Marburg), and arenaviruses (such as Lassa Fever) in addition to working on collaborative projects with the US Army to develop therapies for Ebola and Lassa viruses.

Dr. Rubin pursued her childhood dream of becoming an astronaut when NASA issued a call for applications to the astronaut program; she was accepted in 2009 and became a flight engineer. During her mission to the space station, she conducted 2 space walks and participated in over 250 different experiments. Dr. Rubin was the first individual to sequence DNA in space.

EY: First of all, has anybody else here in the audience been to space? (the audience laughs). So, what’s it like getting ready for going into space?

KR: It’s a heavy suit; it’s got to be airtight. A few hours later, you get the countdown; it’s one of the longest waits of your life. One of the most amazing things is the experience of first docking with the space station. We’ve trained for this before, but never actually experienced zero gravity in space before. The process of getting ready for a spacewalk takes about 12 hours. Prebreathing protocol involving breathing pure oxygen followed by intense exercise to remove nitrogen. This takes several hours to make sure you don’t go through decompression sickness. Then, you float outside the space station. At this point, it’s incredible, because there is nothing beneath you; it’s 250 miles down. It’s hard to do even small things. They train a lot for this in a giant pool. There’s this realization that every piece of equipment costs more than you are ever going to make in your lifetime [as you] float over the space station.

EY: Who decides who gets to do the spacewalk?

KR: Mission control decides and calls us (showing video). There were amazing photos from here. It turns into kind of a sport to take these pictures per request from kids everywhere and other places. You end up seeing this full view of the earth [and[ it gets kind of addictive to be there with your camera taking pictures.

EY: You were a microbiologist by training, but much more is required [and] this requires many disciplines. What is that like?

KR: Absolutely—you are a jack of all trades. You end up being a plumber, an electrician, and more. We’re doing some microscopy, cell culture, and brought a small sequencer. So, we were looking at whether this technology works. These were incredibly exciting experiments. We didn’t know if this was going to work at all. Then we were actually trying sample preps.

(video shows a centrifuge rotor put together with an attachment to a simple drill)

[One of the questions was]: Can you pipette very well on board? The surface tension becomes important for controlling where the fluids stay. We really began to determine whether special pipettes would be needed.

Big advances in treatment can