
C Diff Protects Itself Using Blood Cell Cofactor
The discovery of C diff’s ability to harness heme to shield itself from the body’s immune responses hopefully brings a new dimension to the fight against the damaging pathogen.
The bacterium Clostridioides difficile (C diff), can cause significant inflammation in the gastrointestinal tract, often resulting in diarrhea and bleeding in those who contract it. C. diff is a 
A new report may shed some light on why C diff is so hardy and tough to defeat. Scientists recently discovered that C. diff is able to zero in on heme, a cofactor of the red blood cell protein hemoglobin, and repurpose it as a barrier against antibiotics and the body’s natural immune responses.
In a 
Scientists named the protein system HsmRA, for heme sensing membrane proteins R and A, which work in tandem. “All of this heme is dumped at the site of infection, and the HsmR can sense this key molecule of blood,” Eric Skaar, PhD, MPH, director of the Institute for Infection, Immunology & Inflammation at Vanderbilt University Medical Center and an author of the study, told Contagion. HsmR then activates HsmA, which binds to the heme sensed by HsmR by coating it with a protein heme complex. This protects the pathogen from the oxidative stress generated by immune-system molecules.
It doesn’t take much heme to activate the expression of HsmRA, which is quite sensitive and revs into action immediately upon sensing heme. “When 1 red blood cell pops, there’s clearly enough heme,” Skaar said.
HsmRA, however, doesn’t do its work entirely on its own. Because heme is highly reactive and consequently toxic to C diff, a second system called HatRT works to pump out excess heme and protect the bacteria from heme’s damaging effects. The two systems operate in concert to allow C diff to flourish.
As HsmA enables the reduction of oxidative stress against C diff, the scientists discovered that the protein system might protect the pathogen from the actions of antibiotics, which are commonly prescribed to treat C diff. “The most exciting thing, from a clinical or therapeutic standpoint, is that HsmRA makes the bacteria inherently resistant to oxidizing compounds,” Skaar said, mentioning vancomycin and metronidazole, 2 standard antibiotics prescribed for the infection.
Although scientists don’t understand the exact mechanisms behind how C. diff survives and thrives in the gut, the revelation of HsmRA’s actions brings experts a step closer to finding ways to blunt the bacteria’s ability to protect itself. Skaar mentioned that therapeutics reducing inflammation in the gut might possibly prevent some of the damage from C. diff, as might heme chelators that would bond to heme and prevent it from stimulating HsmRA’s protective actions. There currently are no commercially available heme chelators, although “conceptually, at least, it’s a really interesting idea,” he said.
Newsletter
Stay ahead of emerging infectious disease threats with expert insights and breaking research. Subscribe now to get updates delivered straight to your inbox.






































































































































































































































































































