
Recent Zika Research Uncovers Pathways to Beat the Virus
Recent studies on Zika have lead researchers to discover how the virus causes neurological complications, as well as ways in which the body can fight off the infection.
Recent studies on Zika have lead researchers to discover how the virus causes neurological complications, as well as ways in which the body can fight off the infection.
Zika is a flavivirus infection transmitted by the Aedes aegypti mosquito, which carries Dengue, West Nile Virus and yellow fever. Zika has been confirmed to cause microcephaly in the fetuses of infected pregnant women. Recently, the World Health Organization (WHO)
In one study, researchers, led by John Schoggins, PhD, assistant professor at the University of Texas Southwestern Medical Center, recently discovered how Zika causes neurological complications. Published in Cell Reports,
In a second
Senior author, Abraham Brass, MD, PhD, assistant professor of microbiology and physiological systems,
By altering cell membranes, IFITM3 disallows the virus from entering the cell. George Savidis, research associate at the Brass lab and first author of the study stated, "In effect, we see that IFITM3 allows our cells to swallow up and quarantine the virus thereby stopping their own infection, and also the infection of neighboring cells."
"We think this also reduces the levels of cell death caused by Zika virus." Savidis elaborated, “This work shows that IFITM3 acts as an early front line defender to prevent Zika virus from getting its hands on all of the resources in our cells that it needs to grow.”
In addition, previous research has uncovered that those individuals that are homozygous for the IFITM3 allele, rs12232-C, are at an increased risk for severe influenza. This allele is more prevalent in individuals from Asia and Micronesia, and given the increasing prevalence of the Zika virus in these regions, the authors are interested in determining if this allele may also be a risk factor for other severe infections in both mothers and fetuses. The authors hope to learn if it also contributes to birth defects associated with the Zika virus.
Dr. Brass, in conjunction with Sharone Green, MD, associate professor of medicine, and a flavivirus expert, will be testing these findings on IFITM3-deficient mice, in an effort to analyze animal susceptibility in comparison to human susceptibility. Furthermore, studies are being conducted to find molecules that can increase IFITM3 levels and their anti-viral effects, which Dr. Brass believes can be incorporated into therapies and vaccines for not only Zika, but other viruses as well. He confirms that IFITM3 can block many viruses in addition to Zika, such as Dengue and Ebola. He states, “Given our recent results with Zika virus, it’s now even more important that we work to find out how IFITM3 is blocking these viruses, and use that knowledge to prevent and treat infections.”
The findings from these two studies can help advance future therapy and vaccine efforts. Not only is it now known how the virus causes microcephaly and other neurological disorders, but the means of combating infection have also been discovered. Although most individuals infected with the virus are either asymptomatic or present with mild symptoms, infection in a pregnant woman can have tragic consequences.
In a recent blog post on the White House website, Tom Frieden, MD, MPH, director of the Centers for Disease Control and Prevention (CDC), expresses the urgency with which he believes Zika should be dealt with. He states, “Doctors who have spent the past three decades working in CDC’s birth defects center tell me that they have never seen a situation so urgent. The ability to prevent dozens, hundreds, or even thousands of severe birth defects creates a special responsibility — every child protected is a tragedy prevented.”
Although Congress has yet to grant Zika funding, the CDC has utilized its non-profit
Newsletter
Stay ahead of emerging infectious disease threats with expert insights and breaking research. Subscribe now to get updates delivered straight to your inbox.










































































































































































































































































































