
Scientists Develop Method to Track Antigenic Drift in Influenza A(H3N2) Viruses
A recent study has found that a new method of testing circulating H3N2 flu viruses may help flu experts in selecting seasonal vaccine components.
Influenza activity is on the decline in the United States overall, although recent activity is still elevated, and now investigators are beginning to look ahead to next season.
According to new
In a new study recently published in the journal
As flu vaccine manufacturing takes 4 to 6 months, selecting vaccine virus components requires a great deal of forecasting based on global surveillance data. In the study, the investigators note the difficulties in this forecasting and how antigenic divergence can lead to a significant vaccine mismatch and reduced vaccine effectiveness. The new test reduces antigenic mischaracterization resulting from virus adaptation to cell culture, and may replace antigenic monitoring of circulating viruses often currently conducted using hemagglutination inhibition assay, which has not been effective with H3N2 viruses.
“In this study, we detail the antigenic characterization of influenza A(H3N2) viruses using a new assay, high-content imaging-based micro-neutralization test (HINT),” explain the authors, who used HINT and genomics to assess antigenic relatedness among H3N2 viruses circulating during 2011—2018 and confirm the role of particular amino acid substitutions in the hemagglutinin played in immune escape. “We also demonstrated that this assay can be used to directly characterize viruses in primary human specimens, highlighting the future potential of this assay to antigenically characterize authentic virus populations and without the need for virus propagation in cell culture. This new technique is a promising approach to expedite detection of antigenic drift variants among rapidly evolving influenza A(H3N2) viruses.”
The HINT assay offers a way for investigators to directly analyze patients’ respiratory samples rather than growing the virus in cell culture, which can introduce new mutations, and the CDC has called the new method an important scientific achievement for vaccine virus selection. “Notably, HINT proved to be useful for directly assessing the antigenic relatedness of A(H3N2) virus isolates and viruses in human respiratory specimens, which will increase throughput and directly characterizes the viruses produced in the human airway,” the investigators concluded. “Thus, HINT offers a valuable addition to the current laboratory tools available for analysis of antigenic relatedness.”
Newsletter
Stay ahead of emerging infectious disease threats with expert insights and breaking research. Subscribe now to get updates delivered straight to your inbox.