
Surface Actions Enable Antibiotics to Work Against Resistant Bacteria
Certain antibiotics can invade drug-resistant bacteria by using brute force at the surface level.
The emergence of bacteria that are resistant to powerful antibiotics has been an alarming issue in the healthcare field, with the creation of new drugs that can fight these bacteria a priority. According to the Centers for Disease Control and Prevention (
Part of the problem can be attributed to antibiotic overuse, wherein healthcare providers prescribe antibiotics for patients even in cases where they are not warranted, such as with the common cold. All bacteria are constantly evolving and will eventually “outwit” the drugs used to kill them; however, antibiotic overuse speeds up this process—hence, the urgent need for new drugs. Yet, in the midst of this flurry of development of new antibiotics has come the discovery that certain antibiotics actually can kill supposedly drug-resistant bacteria. It all depends on the particular molecular changes that happen at the surface level.
As described in a recent research study, a
According to Joseph Ndieyira, PhD, a senior scientist at University College London and the study’s lead author, the precise mechanisms by which antibiotics work their magic include surface changes on the bacteria: “Antibiotics work like a key that fits into a lock on the bacterial cell surface, and by opening the lock, the antibiotic is able to kill the bacteria. When bacteria develop resistance, the key is no longer able to open the lock. However, with our new approach, the antibiotic is modified so as to force open the lock using brute force. Oritavancin is a much stronger drug against bacteria than vancomycin because it is able to form clusters that lead to generation of strong forces which tear holes in the surface of bacteria and rip them apart.”
The study team came up with a mathematical model highlighting the way antibiotics behave when encountering the surface area of different bacteria. “This model can be used to design new antibiotics or optimize existing ones so that they are more powerful at killing bacteria using brute force,” Dr. Ndieyira said.
The University College London team is not the only group of researchers developing innovative ways to deal with drug-resistant bacteria. Scientists at the Imperial College of London and Nottingham University Medical School recently released a
Laurie Saloman, MS, is a health writer with more than 20 years of experience working for both consumer and physician-focused publications. She is a graduate of Brandeis University and the Medill School of Journalism at Northwestern University. She lives in New Jersey with her family.
Newsletter
Stay ahead of emerging infectious disease threats with expert insights and breaking research. Subscribe now to get updates delivered straight to your inbox.











































































































































































































































































































