Get the content you want anytime you want.

New Biosecurity Threats Appear in Less Familiar Forms

What do CRISPR and DURC have to do with bioterrorism? In a word, everything. The growing biotech industry makes the science of genetic engineering easier and more accessible, while DURC means that research with pathogens of pandemic potential poses both a biosecurity and biosafety risk. Imagine a lab failure, which history proves can happen, that results in the release of a strain of H7N9 that has been modified to be easily transmitted among people or a strain of Neisseria meningitis that is highly resistant to antibiotics. This becomes even more relevant as the dramatic increase in biodefense activities and in the number of biosafety level 4 labs continues.14 Moreover, imagine that this incident is not an accident; rather, it has occurred because of a person with bioterrorist ambitions who acquired access to these labs or even an insider threat like Bruce Ivins. The truth is that the threat of bioterrorism is no longer beholden to the state program or cultish group with a makeshift lab in their garage but may also include a DIY biohacker or laboratory worker with nefarious intent.

How can we, as infectious disease practitioners, prepare or respond? First, knowledge is key. It is crucial to understand the threats, whether they are a natural outbreak, a lab breach you read about, or even just a review of the signs and symptoms of organisms we tend to worry about but may not see in the United States (such as severe acute respiratory syndrome, Middle East respiratory syndrome, anthrax, etc). Researchers should also consider the implications of their work and take the necessary review processes to ensure the proper biosecurity measures are taken.

Second, as simple as it sounds, practice vigilant infection control. That’s right—hand hygiene, personal protective equipment use, rapid isolation of potentially infectious patients, and working with your infection prevention and control (IPC) resources. Fundamentally, these practices will provide the first and most vital line of defense against the exposure and spread of a disease.

Third, keep an open communication channel with those IPC resources and your local public health department. If something seems off, say something. You are without a doubt the most vital part of identifying patients with unusual or concerning disease presentations. Every outbreak begins with someone asking questions and knowing when to bring in additional resources. Consider a surge of patients with the same symptoms during an off time of year or with symptoms of a rare disease. Although the surge could be a flu epidemic, or the result of a crowd from a major sporting event being exposed to a food-borne pathogen, it could also be something more sinister. By touching base with public health officials, you allow them to start investigating.

Last, don’t stop what you’re doing. Infectious disease threats present from all angles—natural, accidental, or as acts of bioterrorism—but they all require identification, isolation, and treatment from practitioners. The field of infectious disease and public health isn’t for the weary, and every person is vital to global health security.
Ms. Popescu is a hospital epidemiologist and infection preventionist with Phoenix Children’s Hospital in Phoenix, Arizona. She is currently a PhD candidate in Biodefense at George Mason University, where her research focuses on the role of infection prevention in facilitating global health security efforts.  

  1. US Federal Bureau of Investigation. Amerithrax or anthrax investigation. Published May 17, 2016. Accessed June 17, 2017.
  2. Bresnitz, EA. Lessons learned from the CDC’s post-exposure prophylaxis program following the anthrax attacks of 2001. Pharmacoepidemiol Drug Saf. 2005;14(6):389-391. doi:10.1002/pds.1086.
  3. AMERITHRAX INVESTIGATIVE SUMMARY. Released Pursuant to the Freedom of Information Act. February 19, 2010. Accessed October 24, 2017.
  4. Koblentz, Gregory D. Living weapons: biological warfare and international security. Ithaca: Cornell University Press, 2011
  5. Cosgrove SE, Perl TM, Song X, Sisson SD. Ability of physicians to diagnose and manage illness due to category A bioterrorism agents. Arch Intern Med. 2005;165(17):2002-2006. doi:10.1001/archinte.165.17.2002.
  6. Khaniejo N. Use of chemical and biological weapons by Daesh / ISIS. CBW Magazine: Journal on Chemical and Biological Weapons. 2016;9(3). Accessed June 21, 2017.
  7. Boles KS, Kannan K, Gill J, et al. Digital-to-biological converter for on-demand production of biologics. Nat Biotechnol. 2017;35(7):672-675. doi: 10.1038/nbt.3859.
  8. Vasiliou SK, Diamandis EP, Church GM, et al. CRISPR-Cas9 system: opportunities and concerns. Clin Chem. 2016;62(10):1304-1311. doi: 10.1373/clinchem.2016.263186.
  9. Wood M, Velasco P. Crispr inventor worries about the unintended consequences of gene editing. Marketplace website. Published June 16, 2017. Accessed June 21, 2017.
  10. Kupferschmidt K. How Canadian researchers reconstituted an extinct poxvirus for $100,000 using mail-order DNA. Science. June 2017. doi:10.1126/science.aan7069.
  11. Koblentz GD. The de novo synthesis of horsepox virus: implications for biosecurity and recommendations for preventing the reemergence of smallpox. Health Secur. August 24, 2017. doi: 10.1089/hs.2017.0061.
  12. Schnirring L; Center for Infectious Disease Research and Policy. Work continues on policies for ‘gain of function’ research. Published October 2, 2015. Accessed June 21, 2017.
  13. David MalakoffJan. 23, 2013 , 1:00 PM, 20 2017 S, 19 2017 S. H5N1 Researchers Announce End of Research Moratorium. Science | AAAS. Published July 26, 2017. Accessed September 20, 2017
  14. Koblentz G, Lentzos F; International Law and Policy Institute. 21st century biodefence: risks, trade-offs & responsible science. Published November 2016. Accessed June 18, 2017.

Big advances in treatment can