Get the content you want anytime you want.

Candida Auris: The Rise of a New Fungal Threat

Further illustration of this organism’s ability to be spread patient-to-patient is demonstrated by the asymptomatic colonization of close contacts of those with active infection. Three hundred and ninety close contacts of the first 77 infected patients in the United States were screened for C. auris colonization using axillary and groin swabs. Forty-five of these individuals (12%) were found to be colonized with the organism (Figure 2).5 Additionally, patients with a previous infection may remained colonized with this organism for weeks to months after treatment of the acute infection.6 Even more troubling, C. auris appears to survive on surfaces within an infected patient’s hospital environment. The organism has been isolated from beds, windowsills, chairs, infusion pumps, and other various surfaces in the rooms of patients with active infections.5 These factors likely contribute to the potential for patient-to-patient spread in a healthcare environment, which raises major concern given the observed mortality rate of roughly 60% in patients infected with C. auris.6  
Cases of C. auris in United States
This organism can be especially difficult to identify with standard laboratory methods. It is frequently misidentified as C. saki or Rhodotorula glutinis by API 20C yeast identification system or as C. haemulonii by both the BD Phoenix system as well as Vitek-2.8 Diag­nostic confirmation by molecular sequencing or Matrix Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) mass analysis should be considered in several circumstances to avoid misidentification and delay of effective therapy for infections due to C. auris. A complete set of recommen­dations for when diagnos­tic confirmation should be considered for possible C. auris infection are available from the CDC.8  

One final characteristic that makes C. auris particularly concerning as an emerging pathogen is its lack of susceptibility to commonly used antifungals. Early case reports and small case se­ries have shown high rates of multidrug resistance in C. auris isolates, including some strains with elevated mini-mum inhibitory con­centrations (MICs) to all 3 major classes of antifungal medications.6 These reports are confounded by the fact that susceptibility break-points for C. auris have not yet been formally established. In the interim, the CDC has recommended the use of MIC susceptibility breakpoints derived from other closely related Candida species.8  

In their review of 54 C. auris cases, Lockhart et al. found that 50/54 (93%) of isolates were resistant to fluconazole, 29/54 (54%) were resistant to voriconazole, 19/54 (35%) were resistant to amphotericin B, 4/54 (7%) were resistant to echinocandins, and 3/54 (3%) were resistant to flucytosine. Additionally, 22 isolates (41%) were resistant to at least 2 different classes of antifungals and two isolates, both from India, were resistant to fluconazole, voriconazole, amphotericin B, and echi­nocandins.2 Consistent with the susceptibility profile identified by Lockhart et al, susceptibility testing of the first 35 isolates cultured in the United States revealed that 86% were resistant to fluconazole, 45% were resistant to amphotericin B, and 3% were resistant to echinocandins.  

Advocacy and Research Foundation Partners
Big advances in treatment can